Abstract

Sustainable fisheries require (1) viable stock populations with appropriate harvest limits and (2) appropriate habitat for fish to survive, forage, seek refuge, grow and reproduce. Some deep-water habitats, such as those formed by deep-water stands of coral, may be vulnerable to fishing disturbance. The rate at which habitat can be restored is a critical aspect of fishery management. The purpose of this study was to characterize growth rates for a habitatforming deep-sea coral. Two nearly complete colonies of red tree coral (Primnoa resedaeformis) collected from waters off southeast Alaska were used for an analysis of age and growth characteristics. CAT scans revealed that colonies consisted of multiple settlement events, where older basal structures provided for settlement of new colonies. The decay of 210 Pb over the length of the colony was used to validate age estimates from growth ring counts. Age estimates were over 100 yr for sections near the heavily calcified base. Based on validated growth ring counts, growth of red tree coral ranged from 1.60 to 2.32 cm per year in height and was approximately 0.36 mm per year in diameter. These growth rates suggest that the fishery habitat created by red tree coral is extremely vulnerable to bottom fishing activities and may take over 100 years to recover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.