Abstract
We study the distribution of ages in the mean field forest fire model introduced by Ráth and Tóth. This model is an evolving random graph whose dynamics combine Erdős–Rényi edge-addition with a Poisson rain of lightning strikes. All edges in a connected component are deleted when any of its vertices is struck by lightning. We consider the asymptotic regime of lightning rates for which the model displays self-organized criticality. The age of a vertex increases at unit rate, but it is reset to zero at each burning time. We show that the empirical age distribution converges as a process to a deterministic solution of an autonomous measure-valued differential equation. The main technique is to observe that, conditioned on the vertex ages, the graph is an inhomogeneous random graph in the sense of Bollobás, Janson and Riordan. We then study the evolution of the ages via the multitype Galton–Watson trees that arise as the limit in law of the component of an identified vertex at any fixed time. These trees are critical from the gelation time onwards.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.