Abstract

Motivated by limits of critical inhomogeneous random graphs, we construct a family of measured metric spaces that we call continuous multiplicative graphs, that are expected to be the universal limit of graphs related to the multiplicative coalescent (the Erdős–Rényi random graph, more generally the so-called rank-one inhomogeneous random graphs of various types, and the configuration model). At the discrete level, the construction relies on a new point of view on (discrete) inhomogeneous random graphs that involves an embedding into a Galton–Watson forest. The new representation allows us to demonstrate that a process that was already present in the pioneering work of Aldous [Ann. Probab. 25 (1997) 812–854] and Aldous and Limic [Electron. J. Probab. 3 (1998) 1–59] about the multiplicative coalescent actually also essentially encodes the limiting metric. The discrete embedding of random graphs into a Galton–Watson forest is paralleled by an embedding of the encoding process into a Lévy process which is crucial in proving the very existence of the local time functionals on which the metric is based; it also yields a transparent approach to compactness and fractal dimensions of the continuous objects. In a companion paper, we show that the continuous multiplicative graphs are indeed the scaling limit of inhomogeneous random graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.