Abstract

It is commonly assumed that when a mix achieves satisfactory performance in Quality Control tests at 28days this result will translate into satisfactory performance throughout the design life of the corresponding concrete structure. While this is generally true of the compressive strength of concrete it is not necessarily true for other parameters. The post-crack performance of fibre reinforced concrete (FRC) differs from that of conventionally reinforced concrete in that the post-crack performance of fibres is related in a complex manner to the characteristics of the concrete matrix. Age-dependent changes in the characteristics of the concrete matrix can effect changes in the post-crack behaviour of fibres. The present investigation has examined how the post-crack energy absorption of fibre reinforced shotcrete (FRS) changes with aging and has found that some types of fibre exhibit dramatically different performance characteristics at late age compared to that displayed at 28days. This change can have significant consequences for the design of ground support based on fibre reinforced shotcrete. Tunnel linings required to resist sustained ground stresses, or which may be subject to deformation associated with seismicity or ground movement at later ages, should be designed with consideration of a possible long-term loss of ductility exhibited by some types of fibre reinforced shotcrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call