Abstract

The Aracena metamorphic belt (AMB), southwest Iberian peninsula, is characterized by the following geological elements: (a) a high-temperature/low-pressure (HT/LP) metamorphic belt a few kilometres wide and more than 200 km long; (b) a linear belt of oceanic amphibolites with a low-pressure inverted metamorphic gradient; (c) crustal-scale ductile shear zones; and (d) mafic, noritic intrusions of high-Mg andesite (boninite) composition. The relationships between these elements led to the proposal of a model of ridge subduction for this sector of the Hercynian belt of Europe. This interpretation is supported by the age relationships displayed between the main rock units considered representative of the main tectonic and petrological processes responsible for the geological elements mentioned previously. The results of a geochronological study (Ar–Ar, Rb–Sr and Sm–Nd) clearly support a Late Paleozoic tectonic evolution at an active continental margin. The time evolution of the metamorphism in the oceanic domain, ranging from 342.6±0.6 Ma in the west to 328.4±1.2 Ma in the east, over a distance of 70 km along the metamorphic belt, support a tectonic model of triple-junction migration responsible for the creation at depth of a slab-free window with decisive consequences for the thermal evolution of the region. The origin of the linear metamorphic belt of HT/LP regime may be explained by the migration along a continental margin of a punctual thermal anomaly induced by the creation of a triple-junction at the continental margin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call