Abstract
We propose a software/hardware co-design framework called Agamotto for the complete design automation and performance optimization of the row stationary-based CNN accelerator. We design a scalable accelerator template whose critical design parameters can be configured. Based on the hardware template, Agamotto estimates the performance of the numerous possible hardware implementations for the target FPGA device and CNN model using the latency modeling tool. It chooses the best hardware design and generates the instructions and optimal runtime variables for each target CNN layer. As a result, Agamotto can generate the best hardware design within 61.67 seconds, achieving up to 2.8x higher hardware utilization than the original accelerator. In addition, experimental results show that the performance estimation is accurate, showing only 4.8% difference against the FPGA runtime for the end-to-end CNN model execution. The accelerator implemented on the Xilinx VCU118 evaluation board achieves 402 giga operations per second (GOPS) at 200 MHz, resulting in 13 frames per second (FPS) for the end-to-end execution of VGG-16. It is flexible enough to run more complex CNN models such as ResNet-50 and DarkNet-53, achieving 29.3 FPS and 16.9 FPS, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.