Abstract

Heterogeneous semiconductor photocatalysis has attracted researcher's attention in wastewater treatment owing to the improved surface area, optical properties, and charge transfer rate for boosted degradation of organic pollutants. Thus, the g-C3N4/Ag/TiO2 was prepared following a hydrothermal route for the degradation of azo dye tartrazine (TA) used as a food colourant under solar light. Before application, the composite and pristine materials were interrogated for physicochemical and structural properties using SEM, TEM, EDS, XPS, XRD, UV–vis DRS, PL, BET, Raman, and FTIR spectroscopy. The PL and electrochemical analysis revealed that the CNAT composite had a high charge transfer rate that was coupled with low charge carrier complexation. The degradation efficiency of 91 % was realized in 180 min and the rate of pseudo-first-order kinetics of 0.01143 min−1 was obtained. The CNAT catalyst also displayed high removal efficiency towards a cocktail of naproxen (NPX) and TA. The improved removal efficiencies stem from increased visible usage, reduced charge carrier compounding, and formation of Z-scheme heterojunction with high redox capabilities. The total organic carbon removal reached 95 % while CNAT showed high convincing stability even after four cycles. Given the above results, the hydrothermally prepared composite catalyst can be extended to other organic pollutants such as pharmaceuticals, pesticides, and reduction of inorganics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.