Abstract

The main challenge for the development of a high efficiency supercapacitor is the electrode material. Developing electrode materials with high specific electrical capacitance and low electrical resistance enables an increase in the energy accumulated in the device. In addition, it is expected that the electrode material presents a simple procedure for preparation having low production cost and being environmentally friendly. This work is based on the deposition of silver nanoparticles on activated carbon felt (Ag@ACF) as a supercapacitor electrode. The samples were characterized by field emission gun scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and textural analysis. Supercapacitor behavior was evaluated by galvanostatic charge-discharge curves, cyclic voltammetry and electrochemical impedance spectroscopy using a symmetrical two-electrode Swagelok type cell, and three different aqueous solution electrolytes: 2 M H2SO4, 6 M KOH and 1 M Na2SO4. Ag@ACF presented a high specific capacitance in KOH, about 170 F g-1, which makes it an interesting material for supercapacitor electrodes and it showed good specific electrical capacitance, low resistance and high cyclability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.