Abstract

Supercapacitors have received great attention in science and technology, due to its important qualities as the high cycle life, high power density, and variety of applications. The main challenge for the development of better devices is the electrode material. Developing electrode materials with high specific electrical capacitance and low electrical resistance enables an increase of energy accumulated in the supercapacitor. In addition, it is expected that the electrode material presents a simple procedure for preparation with low production cost and be friendly to the environment. In this work, a cheap and simple electroless process was involved to deposit chemical species of iron on a no expensive textile activated carbon fiber felt with interesting properties for application as supercapacitor electrode. The resulting binary composite (Fe@ACF) supercapacitor electrode possesses a high specific capacitance of 237 F g−1 at a current density of 0.2 A g−1 and only 3% of loss of its initial specific capacitance after 3000 charge-discharge cycles. These results reveal that the activated carbon fiber felt/iron composites are promising materials for supercapacitor electrode applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.