Abstract

The function of integral membrane proteins is critically dependent on their naturally surrounding lipid membrane. Detergent-solubilized and purified membrane proteins are therefore often reconstituted into cell-membrane mimics and analyzed for their function with single-molecule microscopy. Expansion of this approach toward a broad range of pharmaceutically interesting drug targets and biomarkers however remains hampered by the fact that these proteins have low expression levels, and that detergent solubilization and reconstitution often cause protein conformational changes and loss of membrane-specific cofactors, which may impair protein function. To overcome this limitation, we here demonstrate how antibody-modified nanoparticles can be used to achieve affinity purification and enrichment of selected integral membrane proteins directly from cell membrane preparations. Nanoparticles were first bound to the ectodomain of β-secretase 1 (BACE1) contained in cell-derived membrane vesicles. In a subsequent step, these were merged into a continuous supported membrane in a microfluidic channel. Through the extended nanoparticle tag, a weak (∼fN) hydrodynamic force could be applied, inducing directed in-membrane movement of targeted BACE1 exclusively. This enabled selective thousand-fold enrichment of the targeted membrane protein while preserving a natural lipid environment. In addition, nanoparticle-targeting also enabled simultaneous tracking analysis of each individual manipulated protein, revealing how their mobility changed when moved from one lipid environment to another. We therefore believe this approach will be particularly useful for separation in-line with single-molecule analysis, eventually opening up for membrane-protein sorting devices analogous to fluorescence-activated cell sorting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.