Abstract
Affine invariant symmetry sets of planar curves are introduced and studied in this paper. Two different approaches are investigated. The first one is based on affine invariant distances, and defines the symmetry set as the closure of the locus of points on (at least) two affine normals and affine-equidistant from the corresponding points on the curve. The second approach is based on affine bitangent conics. In this case the symmetry set is defined as the closure of the locus of centers of conics with (at least) 3-point contact with the curve at two or more distinct points on the curve. This is equivalent to conic and curve having, at those points, the same affine tangent, or the same Euclidean tangent and curvature. Although the two analogous definitions for the classical Euclidean symmetry set are equivalent, this is not the case for the affine group. We present a number of properties of both affine symmetry sets, showing their similarities with and differences from the Euclidean case. We conclude the paper with a discussion of possible extensions to higher dimensions and other transformation groups, as well as to invariant Voronoi diagrams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.