Abstract
The affine distance symmetry set (ADSS) of a plane curve is an affinely invariant analogue of the euclidean symmetry set (SS) [7], [6]. We list all transitions on the ADSS for generic 1-parameter families of plane curves. We show that for generic convex curves the possible transitions coincide with those for the SS but for generic non-convex curves, further transitions occur which are generic in 1-parameter families of bifurcation sets, but are impossible in the euclidean case. For a non-convex curve there are also additional local forms and transitions which do not fit into the generic structure of bifurcation sets at all. We give computational and experimental details of these.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.