Abstract
Spherical carbon materials with porous and hollow structures have been developed as efficient sulfur host materials for LiS batteries through various synthetic strategies. However, nanostructured carbon materials, generally synthesized by liquid solution processes, have disadvantages of low electrical conductivity as sulfur host materials. In this study, highly porous hollow carbon-carbon nanotubes (CNTs) composite microspheres, with a high loading rate of ultrafine S and high electrical conductivity, are designed and successfully synthesized by an aerosol-assisted process (ultrasonic spray pyrolysis) as efficient sulfur host materials. The carbon-CNTs composite microspheres, with a high sulfur loading rate of 70 wt%, exhibit superior electrochemical performance as a cathode compared to that of S-loaded CNTs balls for LiS batteries. The S-loaded carbon-CNTs composite microspheres exhibit a discharge capacity of 697 mA h g−1 for the 250th cycle at a current density of 1.0C and show high reversible discharge capacities of 685 mA h g−1, even at a high current density of 3.0C. The outstanding cycling and rate performance of S-loaded carbon-CNTs composite microspheres are attributed to the structural flexibility of the hollow structure, loading of ultrafine sulfur in micro- and mesopores of dextrin-derived carbon, and good electrical conductivity due to uniformly dispersed CNTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.