Abstract

Supported bimetallic nanoparticles (NPs) with ultrasmall sizes and homogeneous alloying are attractive for catalysis. However, facile synthesis of this type of material remains very challenging. Here, the aerosol drying impregnation method for rapid, scalable, and general synthesis of silica-supported bimetallic NPs is proposed. The method relies on aerosol spray drying to promote the mixing and dispersing of binary metal precursors on SiO2 . It is capable of controlling the composition and size of bimetallic NPs and avoids the use of expensive metal complex salts and complicated experiment procedures. Twelve permutations combining a noble metal (Pd, Ru, and Pt) and a base one (Fe, Co, Ni, and Cu) with ultrasmall sizes (1.4-2.2nm in average size), uniform dispersion, and good alloying are synthesized. Interesting activity and selectivity trends in catalytic semihydrogenation of phenylacetylene over the supported Pd-based NPs can be observed. The silica-supported PdNi NPs deliver both high activity and styrene selectivity. Spectroscopic and density functional theory calculation results reveal the improved chemoselectivity originated from the suitably down-shifted d-band center of the PdNi NPs inducing an increased energy barrier for overhydrogenation and a weakened styrene adsorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call