Abstract
N-doped graphene (N-graphene) confined Pt nanoparticles (NPs) with core-shell structure supported on carbon nanotubes (CN@Pt/CNTs) are prepared by a facile two-step process. The obtained N-graphene nanoshell ranging from 2 to 4 graphene layers and the Pt NPs covered within N-graphene are uniformly dispersed on the CNTs. The as-prepared CN@Pt/CNTs exhibits much higher styrene selectivity and robust recycle ability in selective hydrogenation of phenylacetylene, compared with that of traditional CNTs supported Pt NPs (Pt/CNTs). DFT calculation reveals that the high styrene selectivity is derived from the confinement effect of N-graphene, which facilitates desorption of styrene from Pt NPs surface, avoiding the over hydrogenation of styrene to benzylethane. The present method paves a new way to design high selective Pt based hydrogenation catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.