Abstract

Lung cancer has been a leading cause of cancer mortality worldwide and aerosol-mediated gene therapy endows numerous advantages compared to other traditional modalities. Here, we reported a folic acid (FA)-modified hyperbranched polyspermine (HPSPE) with prominent biocompatibility for lung cancer cell targeted gene therapy. FA was decorated to the HPSPE via an amidation reaction and the physicochemical properties of nanoplexes formed with DNA were characterized. Gel electrophoresis study elucidated that the designed polymer was capable to condense DNA and protect it from degradation by DNase I. Cell viability and transfection efficiency assay in vitro and in vivo indicated its increased transfection performance with lower toxicity. Furthermore, reduced tumor numbers and down-regulation of Akt1 protein after aerosol treatment containing FA-HPSPE/shAkt1 complexes proved its therapeutic potential for lung cancer suppression. Results obtained in this study suggested that FA-HPSPE with highly biocompatibility and targeting capability while forming complexes with shAkt1 and administrated through noninvasive aerosol could be prospective for inhibiting lung tumorigenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.