Abstract

A comprehensive investigation of physical, optical, and chemical characteristics of columnar aerosols over two locations with distinct environmental settings in the Indo-Gangetic Plain (IGP) region, namely, Kanpur (urban and industrial area) and Gandhi College (rural area), is conducted using high-quality aerosol datasets obtained from ground-based Aerosol Robotic Network (AERONET) observations during the recent five year period (2015–2019). This study utilizes all the crucial columnar aerosol parameters necessary for accurately estimating aerosol radiative forcing. Quantification of contribution by different aerosol species originating from natural and anthropogenic sources to the total aerosol optical depth (AOD) and single scattering albedo (SSA) is important to understand the specific mechanisms that influence the aerosol composition, thereby reducing the uncertainty in aerosol radiative forcing. For the first time, two highly spatially resolved models' (Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA-2) and Copernicus Atmosphere Monitoring Service (CAMS)) simulated absorbing species-wise (black carbon (BC), dust, and brown carbon (BrC)) AOD, and absorption AOD (AAOD) are compared and contrasted against the AERONET observations over the IGP region in a systematic manner. MERRA-2 AODs are mostly lower, whereas CAMS AODs are consistently higher than the AERONET AODs. A comparison of collocated time and space observations with models clearly suggests that improvements in emission inventories on a seasonal scale are essential. MERRA-2 SSA is noted lower than the AERONET SSA during the winter season due to overestimation in BC AOD. During winter in >70% of MERRA-2 simulated SSA the difference is higher than ±0.03 (the uncertainty range of AERONET SSA) whereas during pre-monsoon and monsoon seasons >60% of MERRA-2 SSA lies within the uncertainty range of AERONET SSA. Both models show a gradient in AODDust decreasing from west to east in the IGP. However, observations do not often exhibit the gradient in dust, which is validated by air mass back trajectory analyses as air masses travel through different pathways to IGP and reverse the west to east gradient in AODDust. This quantitative and comparative collocated analysis of observed aerosol characteristics with models on a seasonal scale will enable a better estimation of aerosol radiative forcing, and can help improve aerosol processes and parameterizations in models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.