Abstract

In this paper, the conventional aero-engine acceleration control task is formulated into a Markov Decision Process (MDP) problem. Then, a novel phase-based reward function is proposed to enhance the performance of deep reinforcement learning (DRL) in solving feedback control tasks. With that reward function, an aero-engine controller based on Trust Region Policy Optimization (TRPO) is developed to improve the aero-engine acceleration performance. Four comparison simulations were conducted to verify the effectiveness of the proposed methods. The simulation results show that the phase-based reward function helps to eliminate the oscillation problem of the aero-engine control system, which is caused by the traditional goal-based reward function when DRL is applied to the aero-engine control. And the TRPO controller outperforms deep Q-learning (DQN) and the proportional-integral-derivative (PID) in the aero-engine acceleration control task. Compared to DQN and PID controller, the acceleration time of aero-engine is decreased by 0.6 and 2.58 s, respectively, and the aero-engine acceleration performance is improved by 16.8 and 46.4 % each.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.