Abstract
The development of unsteady aerodynamic analysis with computational fluid dynamics important for investigating the aeroelastic characteristics of rotors made of advanced composite materials. The purpose of the present analysis is to establish an aeroelastic model useful for the preliminary design of advanced turbo propellers. An unsteady aerodynamic model of high subsonic cascade airfoils, including sweep effects and finite span effects, is combined with a structural dynamic model for composite pretwisted propeller blades to produce an aeroelastic analysis tool. The p-k modal flutter analyses for the SR-3 propeller model (made of graphite/epoxy) were conducted. They revealed that suitable combinations of the fiber orientation can eliminate flutter without any weight penalties or strength penalties and that the flutter velocity is found to be sensitive to the interblade phase angle as well as the fiber orientation. These results indicate the effectiveness of aeroelastic tailoring for advanced turbo propellers and also the usefulness of the present analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have