Abstract

Samaras or winged seeds spread themselves by wind. Ash seed, unlike other samaras, has a high aspect ratio wing which can generate enough lift force to slow down descent by rotating about the vertical axis and spinning around its wing span axis simultaneously. This unique kinematics and inherent fluid mechanism are definitely of great interest. Detailed kinematics of free falling ash seeds were measured using high-speed cameras, then corresponding aerodynamic forces and moments were calculated employing computational fluid dynamics. The results show that both rotating and spinning directions are in the same side and the spinning angular velocity is about 6 times of rotating speed. The terminal descending velocity and cone angles are similar to other samaras. Analysis of the forces and moments shows that the lift is enough to balance the weight and the vertical rotation results from a processional motion of total angular moment because the spin-cycle-averaged aer-odynamic moment is perpendicular to the total angular moment and can only change its direction but maintain its magnitude, which is very similar to a spinning top in processional motion except that the total angular moment of ash seed is not along the spin axis but almost normal to it. The flow structures show that both leading and trailing edge vortices contribute to lift generation and the spanwise spinning results in an augmentation of the lift, implying that ash seeds with high aspect ratio wing may evolve in a different way in utilizing fluid mechanisms to facilitate dispersal.

Highlights

  • IntroductionWhen located in front of the seed’s aerodynamic center, the seed exhibits a glider type translation during fall, without any rotation [3]

  • There are two kinds of seeds that dispersed by wind, pappose seeds

  • The results show that both rotating and spinning directions are in the same side and the spinning angular velocity is about 6 times of rotating speed

Read more

Summary

Introduction

When located in front of the seed’s aerodynamic center, the seed exhibits a glider type translation during fall, without any rotation [3]. If located near the terminal end of the wing, i.e., maple and ash seeds, they all inevitably experience rotation during fall. It is the main mechanism behind their long-distance dispersal success, though their wing loading can be 450% higher than that of gliding and straying seeds as found by D. Such high aerodynamic performance may have wide applications in engineering as well, in the design of helicopters and new concept aerial vehicles [5]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.