Abstract

View Video Presentation: https://doi-org.tudelft.idm.oclc.org/10.2514/6.2021-2467.vid Boundary Layer Ingestion (BLI) is a technology that promises fuel consumption benefits for future civil aircraft. However, it introduces detrimental aerodynamic interactions between the propulsor and the airframe. In particular, the inflow to the BLI propulsor is affected by the flow around the airframe elements. The non-uniform inflow can influence the fan aerodynamic, aeroacoustic and aeroelastic performance. As a consequence, the fan design needs to tolerate the inlet distortions in all the flight phases. This paper discusses an experimental study of the aerodynamic performance of an aircraft with a BLI propulsor integrated at the aft-fuselage section, representative of a Propulsive Fuselage Concept (PFC) aircraft. Aerodynamic load measurements show that the BLI propulsor affects the longitudinal and lateral-directional equilibrium of the aircraft in off-cruise conditions. Flow measurements at the BLI propulsor inlet indicate that the fuselage boundary layer induces the strongest total pressure distortion. However, particularly at a non-zero sideslip angle, the vertical tail plane strongly affects the inflow to the BLI propulsor, introducing non-symmetric total pressure and velocity distortions. The analysis of the momentum and power fluxes in the flowfield show that around 20% of the total aircraft drag is produced in the fuselage boundary layer, while around 5% of the total aircraft drag power is dissipated in the fuselage wake. Furthermore, the BLI propulsor substantially reduces the axial kinetic energy flux in the fuselage boundary layer (the so-called ``wake-filling'' effect), suggesting an increased propulsive efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.