Abstract
Birds and bats frequently reconfigure their wing planform through a combination of flapping and local sweep morphing, suggesting a possible approach for improving the performance of micro aerial vehicles. We explore the effects of combined flapping and local sweep morphing on aerodynamic performance by employing a bio-inspired two-jointed flapping wing with local sweep morphing. The bio-inspired wing consists of inner and outer sections, which flap around the root joint (shoulder) and the midspan joint (wrist), respectively. The aerodynamic forces and the unsteady vortex structures are evaluated by numerically solving the incompressible Navier–Stokes equations. The results show that combined flapping and local sweep morphing can significantly enhance the aerodynamic performance. In particular, the average lift coefficient is 1.50 times greater than that of simple gliding with single local sweep morphing. Combined flapping and local sweep morphing also have a relatively high pitch moment and shift the aerodynamic center position backward, producing advantages in terms of maneuverability/agility and stability. We find that the vortex structures associated with the combined motion feature midspan vortices, which arise from the leading-edge vortices of the inner wing and contribute to the enhanced aerodynamic performance. We show that the kinematics of combined flapping and local sweep morphing can be further optimized if the midspan vortices are captured by the outer wing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.