Abstract

Supersonic compressors have a high wheel speed and operational capability, which facilitate a high stage pressure ratio. However, the strong shock waves in the passage of a supersonic rotor and the interference between shock waves and boundary layers can lead to large flow loss and low efficiency. Moreover, the existing design of a high-load supersonic compressor has the problem of small stall margin. In this study, an automatic optimization method including 2D profile optimization and 3D blade optimization is proposed to achieve a high efficiency at the design point of a supersonic compressor rotor under the premise of reaching the desired mass flow rate and total pressure ratio. According to the analysis of flow near the stall point of the supersonic compressor rotor, the mechanism responsible for rotor tip stall is established, that is, the aerodynamic throat appeared inside the flow passage, reducing the ability of the blade tip to withstand back pressure, and the low-speed areas caused by the tip-leakage-vortex breakage and boundary layer separation reduced the flow capacity of the blade tip. Based on the reasons for rotor stall, three methods are proposed to improve the stall margin, which include increasing the exit radius of the upper meridian, forward sweep of the blade tip, and increasing the chord length of the blade tip. The above method is used to design a supersonic rotor with a total pressure ratio of 2.8, which exhibits an efficiency of 0.902 at the design point and a stall margin of 18.11%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.