Abstract

This paper reports on the design, development and experimental validation of an aerodynamic journal bearing with a flexible, damped support operating at speeds up to 1.2 million rpm (= 7.2 million DN). In terms of the DN-number, this achievement represents to our knowledge a record for an air bearing of the self-acting type. Stabilization by means of a flexible, damped support therefore proves to be a promising solution to the dynamic stability problem of high-speed gas bearings. In order to select the support parameters in an optimal way, a stability study is performed leading to the formulation of a series of dimensionless design guidelines. The proposed implementation, which makes use of elastomeric O-rings in combination with a tunable squeeze-film damper, is discussed in detail. A method for the manufacturing of miniature bearing bushes with a wave-shaped film height profile is outlined. Experiments up to 683 280 rpm are performed with an air-driven turbine and up to 1203 000 rpm with a helium-driven turbine. Deceleration experiments are conducted in order to obtain an estimation of the frictional losses of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.