Abstract

Previous experimental and analytical studies comparing the performance of transonic swept rotors in single and multistage fans have demonstrated the potential of large improvements in clean inlet performance and substantial improvements in fan sensitivity with inlet distortion with forward swept blading. A two-stage, low-aspect ratio transonic fan investigation was previously conducted in the Air Force’s Compressor Research Facility, in two builds on a back-to-back test basis, using a radial and a forward swept stage 1 blade. While the forward swept stage 1 blade configuration did demonstrate superior front stage efficiency and tolerance to inlet distortion, the common second stage among the two builds prevented the overall fan from showing clean inlet performance and stability benefits with the forward swept rotor 1. To address this measured overall performance shortfall, this paper reports on the design of a new second stage blade tested in the same two-stage fan rig with the forward swept stage 1 blade configuration. The new second stage blade was designed with forward sweep to improve efficiency and operability while replicating the baseline radial rotor 2’s aerodynamic design conditions within the same flow path. The design point requirements of the forward swept rotor 2 were selected to preserve the internal stage matching with the radially stacked rotor 2. As the new stage 2 blade had to fit within the existing radial rotor 2’s physical envelope, the new blade was designed with forward sweep through lean only, which proved to be quite challenging from a mechanical growth and deflection view point. The first attempt to run the fan rig with the new stage 2 blade resulted in a leading-edge tip rub during a part speed stall event. However, even with this unfortunate event, fan mapping test results with clean inlet from part speed to 97.5% design speed showed a significant improvement in overall fan efficiency and stall margin, validating the hypothesis that in the earlier tests stage 2 was indeed the limiting stage that prevented the fan from reaching its overall performance goals. Based on this experience and the test data acquired with unstable leading-edge tip rubs during stall deflections with forward swept airfoils leaned in the direction of rotation, a process was developed to determine the acceptability criteria of such blading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call