Abstract

Small scale wind turbines can meet a substantial part of the electricity demand of residential buildings and facilities in isolated areas. It is a curious fact, however, that for many of these systems the actual power output has been dramatically overestimated. This can be partially explained by the very high rated wind speeds at which the design power output applies. The current work depicts the pathway to an aerodynamically optimized design of a small scale horizontal axis wind turbine in the 1kW class, optimized for wind speeds between 3.5 m/s and 5.5 m/s, a typical range of the energetic average of urban wind speeds. The aerodynamic stability of the blade has been a particular focus leading to a nearly constant efficiency over a range of wind speeds. The rotating speed of the system is adjusted to the optimal tip speed ratio at wind speeds up to maximum power via active control of the aerodynamic torque of the rotor blades. This is realized by adapting the generator torque to the current wind speed guaranteeing optimal efficiency and power output. The rotor blade optimization has been conducted unconventionally, in a turbomachinery-inspired 3D-blade design optimization campaign, using high-fidelity compressible CFD. This approach is described in detail, focussing on geometry parametrization and the numerical model with reasonable boundary conditions. Finally, the aerodynamic performance of the rotor blade is assessed at different wind speeds and pitching angles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call