Abstract
The morphing wing can improve the flight performance during different phases. However, research has been subject to limitations in aerodynamic characteristics of the morphing wing with a flexible leading-edge. The computational fluid dynamic method and dynamic mesh were used to simulate the continuous morphing of the flexible leading-edge. After comparing the steady aerodynamic characteristics of morphing and conventional wings, this study examined the unsteady aerodynamic characteristics of morphing wings with upward and downward deflections of the leading-edge at different frequencies. The numerical results show that for the steady aerodynamic, the leading-edge deflection mainly affects the stall characteristic. The downward deflection of the leading-edge increases the stall angle of attack and nose-down pitching moment. The results are opposite for the upward deflection. For the unsteady aerodynamic, at a small angle of attack, the transient lift coefficient of the upward deflection, growing with the increase of deflection frequency, is larger than that of the static case. The transient lift coefficient of the downward deflection, decreasing with the increase of deflection frequency, is smaller than that of the static case. However, at a large angle of attack, an opposite effect of deflection frequency on the transient lift coefficient was demonstrated. The transient lift coefficient is larger than that of the static case when the leading edge is in the nose-up stage, and lower than that of the static one in the nose-down stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.