Abstract
Aerocapture, the action of delivering a vehicle from a hyperbolic orbit to a planetary orbit by using the aerodynamic force, could potentially lower fuel consumption. By controlling the direction and size of the aerodynamic force, the vehicle can accurately enter the target orbit. This paper focuses on a preliminary study of the optimal trajectory for aerocapture on the basis of a novel flight control option, which considers lift and drag joint modulation so as to suit variable structure spacecraft. In the preliminary evaluation of such a flight control option, the aerocapture corridors under lift modulation and drag modulation and the influence of the ballistic coefficient on aerocapture were analyzed, demonstrating that joint modulation can achieve complementary advantages compared with pure lift modulation and drag modulation. Based on this flight control option, optimal aerocapture trajectories with different path constraints, target orbital constraints and control variable constraints were found. It bears noting that both the bank angle and the reference area were taken as control variables for lift modulation and drag modulation, respectively, during the atmospheric flight in the process of designing the optimal trajectories. The optimal results indicate that the flight control option with lift and drag joint modulation can greatly broaden the necessary conditions for aerocapture and extend the target orbital range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.