Abstract
The critical thermal maximum (CTmax) of insects can be determined using flow-through thermolimit respirometry. It has been demonstrated that respiratory patterns cease and insects do not recover once the CTmax temperature has been reached. However, if high temperatures are maintained following the CTmax, researchers have observed a curious phenomenon whereby the insect body releases a large burst of carbon dioxide at a rate and magnitude that often exceed that of the live insect. This carbon dioxide release has been termed the post-mortal peak (PMP). We demonstrate here that the PMP is observed only at high temperatures, is oxygen-dependent, is prevented by cyanide exposure, and is associated with concomitant consumption of oxygen. We conclude that the PMP derives from highly active, aerobic metabolism in the mitochondria. The insect tracheal system contains air-filled tubes that reach deep into the tissues and allow mitochondria access to oxygen even upon organismal death. This unique condition permits the investigation of mitochondrial function during thermal failure in a manner that cannot be achieved using vertebrate organisms or in vitro preparations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.