Abstract

Thermal limits to activity profoundly affect the abundance and distribution of ectothermic animals. Upper thermal limits to activity are typically reported as the critical thermal maximum (CT(max)), the temperature at which activity becomes uncontrolled. Thermolimit respirometry is a new technique that allows CT(max) to be quantified in small animals, such as insects, as the point of spiracular failure by measuring CO(2) release from the animal as temperature increases. Although prior studies have reported a characteristic pattern of CO(2) release for insects during thermolimit respirometry trials, no studies have been carried out to determine the universality of this pattern across development, or at what point death occurs along this pattern. Here, we compared the CT(max) and patterns of CO(2) release among three life stages of a beetle species, Tenebrio molitor, and mapped heat death onto these patterns. Our study is the first to report distinct patterns of CO(2) release in different life stages of an insect species during thermolimit respirometry. Our results show that CT(max) was significantly higher in adult beetles than in either larvae or pupae (P<0.001) and, similarly, death occurred at higher temperatures in adults than in larvae and pupae. We also found that death during heating closely follows CT(max) in these animals, which confirms that measuring the loss of spiracular control with thermolimit respirometry successfully identifies the point of physiological limitation during heat stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.