Abstract

An investigation was carried out to study the degradation of anionic polyacrylamide (A-PAM) under different temperature and microorganism conditions as well as to assess its effects on water chemistry and toxicity in oil sands tailings. The maximum removal efficiency of A-PAM was 41.0 % in tailings water with augmented microorganisms at 20 °C. No acrylamide (AMD) monomer was released during the A-PAM degradation, while residual AMD, from the manufacturing process to make A-PAM, was completely removed within 4 weeks. Both temperature and microorganisms showed significant effects (p < 0.05) on the degradation of A-PAM and residual AMD. Gel permeation chromatography (GPC) and Fourier transform infrared (FT-IR) analyses showed that biodegradation could be the active pathway for A-PAM degradation in oil sands tailings. These analyses also indicated that macromolecular A-PAM was degraded into lower molecular weight organic compounds. No remarkable changes of the total concentration of naphthenic acids (NAs) were observed in A-PAM treated tailings water. However, low concentrations of fatty acids (<2.5 mg/L), which fit the NAs formula, were detected in pure polymer solution, indicating that A-PAM degradation would not affect the total concentration of NAs in tailings water but affect their distribution. Our results also showed that total organic carbon (TOC) and chemical oxygen demand (COD) could be used as indicators of A-PAM degradation in tailings water due to their strong linear correlations (R2 > 0.90). Only slight increases in zeta potential and pH were found during A-PAM degradation. Limited effect on acute toxicity and no genotoxicity were found in A-PAM treated tailings water. Furthermore, the results suggest that A-PAM undergoes hydrolysis of amide groups by amidase enzymes, releasing ammonia and smaller molecules like organic acids. This research provides valuable information regarding the stability and impacts of A-PAM and thus will be beneficial for the management of oil sands tailings in long period of time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call