Abstract

A 2,4,6-trinitrophenol (TNP) degrading bacterial strain isolated from a site polluted with explosives was identified as Proteus sp. strain OSES2 via 16S rRNA gene sequencing. Metabolic investigation showed that the organism grew exponentially on 100mg l-1 of TNP as a source of carbon, nitrogen, and energy. In addition, the growth of the organism was sustainable on 3-nitrotoluene, 2,4-dinitrotoluene, 2,4,6-trinitrotoluene, 4-nitrophenol, methyl-3-nitrobenzoate, 4-nitroaniline, aniline and nitrobenzene. Strain OSES2 was able to utilize TNP within a concentration range of 100mg l-1 to 500mg l-1. The specific growth rate and degradation rates on TNP were 0.01043h-1 and 0.01766mg l-1h-1 respectively. Effective degradation of TNP in a chemically defined medium was evident with a gradual reduction in the concentration of TNP concomitant with an increase in cell density as well as the substantial release of ammonium (NH4+), nitrite (NO2-), and nitrate (NO3-) as metabolites in 96h. Degradation competence of the organism was enhanced in the presence of starch and acetate. On starch-supplemented TNP, the highest specific growth rate and degradation rates were 0.02634h-1 and 0.04458mg l-1h-1, respectively, while the corresponding values on acetate were 0.02341h-1 and 0.02811mg l-1h-1. However, amendment with nitrogen sources yielded no substantial improvement in degradation. TNP was utilized optimally at pH 7 to 9 and within the temperature range of 30°C to 37°C. The enzyme hydride transferase II [HTII], encoded by the npdI gene which is the first step involved in the TNP degradation pathway, was readily expressed by the isolate thus suggesting that substrate was utilized through the classical metabolic pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.