Abstract

The well-known batch assay test is used worldwide to determine the biochemical methane potential (BMP) of solid substrates in a single batch but its use to estimate the degradation kinetics may lead to underestimations. To overcome this problem, a different approach was carried out to characterize simultaneously both BMP of solid substrates and their degradation kinetics in successive batches, i.e. after an acclimation period. In a second step, a simple model was developed based on the methane production curve in batch mode for dividing the organic matter of the substrate into three sub-fractions according to their degradation rates (rapid, moderate and slow). The protocol developed was applied to 50 different substrates and a database was built. This database includes: the overall BMP (mL CH4/g VS) and the degradation kinetics for each substrate, i.e. the global specific organic degradation rate (g VS/g VSS.d) along with the 3 sub-fractions and their specific degradation rates. The comparison with the BMP from the literature did not highlight significant difference with the BMP measured in this study. Furthermore, the degradation rates seem to be specific characteristics for each substrate and no clear correlation was found between the degradation kinetics and the kind of substrates. The information available in the database will be useful for the design and operation of anaerobic digesters: Optimization of the mix of co-substrates, choice of the applied OLR, simulation of methane production and of the rate of substrate degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call