Abstract

Aerobic degradation of the sterol tetracyclic nucleus by microorganisms comprises the catabolism of A/B-rings, followed by that of C/D-rings. B-ring rupture at the C9,10-position is a key step involving 3-ketosteroid Δ1-dehydrogenase (KstD) and 3-ketosteroid 9α-hydroxylase (KstH). Their activities lead to the aromatization of C4,5-en-containing A-ring causing the rupture of B-ring. C4,5α-hydrogenated 3-ketosteroid could be produced by the growing microorganism containing a 5α-reductase. In this case, the microorganism synthesizes, in addition to KstD and KstH, a 3-ketosteroid Δ4-(5α)-dehydrogenase (Kst4D) in order to produce the A-ring aromatization, and consequently B-ring rupture. KstD and Kst4D are FAD-dependent oxidoreductases. KstH is composed of a reductase and a monooxygenase. This last component is the catalytic unit; it contains a Rieske-[2Fe-2S] center with a non-haem mononuclear iron in the active site. Published data regarding these enzymes are reviewed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.