Abstract

Potential aerobic biodegradation mechanisms of the widely used polar, low-adsorptive sulfonamide antibiotic sulfamethoxazole (SMX) were investigated in activated sludge at bench scale. The study focused on (i) SMX co-metabolism with acetate and ammonium nitrate and (ii) SMX utilization when present as the sole carbon and nitrogen source. With SMX adsorption being negligible, elimination was primarily based on biodegradation. Activated sludge was able to utilize SMX both as a carbon and/or nitrogen source. SMX biodegradation was enhanced when a readily degradable energy supply (acetate) was provided which fostered metabolic activity. Moreover, it was raised under nitrogen deficiency conditions. The mass balance for dissolved organic carbon showed an incomplete SMX mineralization with two scenarios: (i) with SMX as a co-substrate, 3-amino-5-methyl-isoxazole represented the main stable metabolite and (ii) SMX as sole carbon and nitrogen source possibly yielded hydroxyl-N-(5-methyl-1,2-oxazole-3-yl)benzene-1-sulfonamide as a further metabolite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.