Abstract
BackgroundThe importance of strong science, technology, engineering, and mathematics education continues to grow as society, medicine, and the economy become increasingly focused and dependent upon bioscientific and technological innovation. New advances in frontier sciences (e.g., genetics, neuroscience, bio-engineering, nanoscience, cyberscience) generate ethical issues and questions regarding the use of novel technologies in medicine and public life.DiscussionIn light of current emphasis upon science, technology, engineering, and mathematics education (at the pre-collegiate, undergraduate, graduate, and professional levels), the pace and extent of advancements in science and biotechnology, the increasingly technological orientation and capabilities of medicine, and the ways that medicine – as profession and practice – can engage such scientific and technological power upon the multi-cultural world-stage to affect the human predicament, human condition, and perhaps nature of the human being, we argue that it is critical that science, technology, engineering, and mathematics education go beyond technical understanding and directly address ethical, legal, social, and public policy implications of new innovations. Toward this end, we propose a paradigm of integrative science, technology, ethics, and policy studies that meets these needs through early and continued educational exposure that expands extant curricula of science, technology, engineering, and mathematics programs from the high school through collegiate, graduate, medical, and post-graduate medical education. We posit a synthetic approach that elucidates the historical, current, and potential interaction of scientific and biotechnological development in addition to the ethico-legal and social issues that are important to educate and sustain the next generation of medical and biomedical professionals who can appreciate, articulate, and address the realities of scientific and biotechnological progress given the shifting architectonics of the global social milieu.SummaryWe assert that current trends in science, technology, medicine, and global politics dictate that these skills will be necessary to responsibly guide ethically sound employment of science, technology, and engineering advancements in medicine so as to enable more competent and humanitarian practice within an increasingly pluralistic world culture.
Highlights
The importance of strong science, technology, engineering, and mathematics education continues to grow as society, medicine, and the economy become increasingly focused and dependent upon bioscientific and technological innovation
Given the leverage that bioscience and technology confer and elicit upon an increasingly pluralist world stage, any such ethics, guidelines, and policies will need to be articulated in culturally sensitive ways, so as to best reflect the dynamics of what has been termed the contemporary “global shift” [3]
We opine that to meet the opportunities, benefits, challenges, and burdens generated by the study, development, and use of STEM in real-world scenarios, education must be multidisciplinary, but must engage the natural, physical, and social sciences as well as the humanities in an integrative model that 1) obtains a solid foundation in humanitarian sensitivities, 2) engages knowledge of STEM to address the challenges of modern medicine enacted on a global scale, and 3) entails the humanities and social sciences to assess and direct the value and utility of STEM within current culture, and as means to shape health, culture, and societies of the future
Summary
If we are to prioritize science, technology, engineering, and mathematics (i.e., STEM) pursuant to medical and biomedical education, training, and practice, it is essential to do so in ways that genuinely appreciate and apprehend these pursuits as human enterprises that are devised and articulated, and impact the boundaries of human culture and its societies. Summary Just as research is fostered, supported, and sustained through the structure and function of the “triple helix” conjoining academia, government, and private industry, so too must be the educational training of future biomedical professionals who will bear responsibility for the effects that an ever-expanding fund of scientific and biotechnological knowledge and capability will yield upon the practice of medicine, humanity, world culture, and global environments, writ both small and large These professionals must put to use their integrated knowledge of the ethical, legal, and social issues and how they work within and inform the continued development and application of scientific and technological advances in the medical diagnoses and care.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have