Abstract

AbstractWe study online algorithms with advice for the problem of coloring graphs which come as input vertex by vertex. We consider the class of all 3-colorable graphs and its sub-classes of chordal and maximal outerplanar graphs, respectively.We show that, in the case of the first two classes, for coloring optimally, essentially log23 advice bits per vertex (bpv) are necessary and sufficient. In the case of maximal outerplanar graphs, we show a lower bound of 1.0424 bpv and an upper bound of 1.2932 bpv.Finally, we develop algorithms for 4-coloring in these graph classes. The algorithm for 3-colorable chordal and outerplanar graphs uses 0.9865 bpv, and in case of general 3-colorable graphs, we obtain an algorithm using < 1.1583 bpv.KeywordsPlanar GraphCompetitive RatioOnline AlgorithmChordal GraphGraph ClassThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.