Abstract

BackgroundDysregulaiton of phosphate homeostasis as occurs in chronic kidney disease is associated with cardiovascular complications. It has been suggested that both hyperphosphatemia and hypophosphatemia can cause cardiovascular disease. The molecular mechanisms by which high or low serum phosphate levels adversely affect cardiovascular function are poorly understood. The purpose of this study was to explore the mechanisms of endothelial dysfunction in the presence of non-physiologic phosphate levels.Methodology/Principal FindingsWe studied the effects of simulated hyper- and hypophosphatemia in human umbilical vein endothelial cells in vitro. We found both simulated hyperphosphatemia and hypophosphatemia decrease eNOS expression and NO production. This was associated with reduced intracellular calcium, increased protein kinase C β2 (PKCβ2), reduced cell viability, and increased apoptosis. While simulated hyperphosphatemia was associated with decreased Akt/p-Akt, Bcl-xl/Bax ratios, NFkB-p65 and p-Erk abundance, simulated hypophosphatemia was associated with increased Akt/p-Akt and Bcl-xl/Bax ratios and p-Mek, p38, and p-p38 abundance.Conclusions/SignificanceThis is the first demonstration of endothelial dysfunction with hypophosphatemia. Our data suggests that both hyperphosphatemia and hypophosphatemia decrease eNOS activity via reduced intracellular calcium and increased PKCβ2. Hyperphosphatemia also appears to reduce eNOS transcription via reduced signaling through PI3K/Akt/NF-kB and MAPK/NF-kB pathways. On the other hand, hypophosphatemia appears to activate these pathways. Our data provides the basis for further studies to elucidate the relationship between altered phosphate homeostasis and cardiovascular disease. As a corollary, our data suggests that the level of phosphate in the culture media, if not in the physiologic range, may inadvertently affect experimental results.

Highlights

  • Phosphate is an essential mineral that is a necessary component of DNA and RNA, is essential for cellular metabolism as an energy source in the form of ATP, and is critical for proper bone development

  • We examined the effect of exposure to different concentrations of inorganic phosphate for 24 hours on endothelial cell proliferation, apoptosis, endothelial nitric oxide synthase (eNOS) expression, and nitric oxide (NO) production

  • The simulated hyperphosphatemia-induced down-regulation of eNOS expression could be reversed by cotreatment with phosphonoformic acid (PFA), which is a specific inhibitor of phosphate transport across the cell membrane

Read more

Summary

Introduction

Phosphate is an essential mineral that is a necessary component of DNA and RNA, is essential for cellular metabolism as an energy source in the form of ATP, and is critical for proper bone development. Serum phosphate levels are regulated by an interplay of dietary intake, parathormone (PTH), 1,25-dihydroxyvitamin D, and fibroblast growth factor 23 (FGF23) that act on the intestine, skeleton, and kidneys [1]. PTH increases and FGF23 decreases the proximal renal tubular expression of 25-hydroxyvitamin D 1a-hydroxylase that catalyzes the conversion of 25hydroxyvitamin D to 1,25-dihydroxyvitamin D. The latter in turn regulates serum phosphate concentration by increasing intestinal calcium and phosphate absorption [1]. The molecular mechanisms by which high or low serum phosphate levels adversely affect cardiovascular function are poorly understood. The purpose of this study was to explore the mechanisms of endothelial dysfunction in the presence of non-physiologic phosphate levels

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call