Abstract
Adversarial Machine Learning (AML) discusses the act of attacking and defending Machine Learning (ML) Models, an essential building block of Artificial Intelligence (AI). ML is applied in many software-intensive products and services and introduces new opportunities and security challenges. AI and ML will gain even more attention from the industry in the future, but threats caused by already-discovered attacks specifically targeting ML models are either overseen, ignored, or mishandled. Current AML research investigates attack and defense scenarios for ML in different industrial settings with a varying degree of maturity with regard to academic rigor and practical relevance. However, to the best of our knowledge, a synthesis of the state of academic rigor and practical relevance is missing. This literature study reviews studies in the area of AML in the context of industry, measuring and analyzing each study’s rigor and relevance scores. Overall, all studies scored a high rigor score and a low relevance score, indicating that the studies are thoroughly designed and documented but miss the opportunity to include touch points relatable for practitioners.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.