Abstract

Adventitious root formation is defined as the formation of new roots on above-ground plant parts and is considered crucial for the survival of a plant under harsh environmental conditions (i.e., flooding, salt stress, and other abiotic stresses) as well as in the nursery industry. Clonal propagation is based on the ability of a plant part to grow and generate a completely new plant, genetically identical to the mother plant, where the plant part came from. Nurseries exploit this potential by multiplying millions of new plants. Most nurseries use cuttings to achieve that, through the induction of adventitious root formation. Many factors have been implicated in the capacity of a cutting to root, with the major role being played by auxins. During the last few decades, intense interest has emerged in the role of other potential rooting co-factors, such as carbohydrates, phenolics, polyamines, and other plant growth regulators, as well as signal molecules, such as reactive oxygen and nitrogen species. Among the latter, hydrogen peroxide and nitric oxide have been found to play significant roles in adventitious root formation. Their production, action, and general implication in rhizogenesis are discussed in this review, in terms of interaction with other molecules and signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call