Abstract

A few years ago it was demonstrated that nitric oxide (NO) and cGMP are involved in the auxin response during adventitious root (AR) formation in cucumber (Cucumis sativus). More recently, a mitogen-activated protein kinase cascade was shown to be induced by IAA in a NO-dependent, but cGMP-independent, pathway. In the present study, the involvement of Ca2+ and the regulation of Ca2+-dependent protein kinase (CDPK) activity during IAA- and NO-induced AR formation was evaluated in cucumber explants. The effectiveness of several broad-spectrum Ca2+ channel inhibitors and Ca2+ chelators in affecting AR formation induced by IAA or NO was also examined. Results indicate that the explants response to IAA and NO depends on the availability of both intracellular and extracellular Ca2+ pools. Protein extracts from cucumber hypocotyls were assayed for CDPK activity by using histone IIIS or syntide 2 as substrates for in-gel or in vitro assays, respectively. The activity of a 50 kDa CDPK was detected after 1 d of either NO or IAA treatments and it extended up to the third day of treatment. This CDPK activity was affected in both extracts from NO- and IAA-treated explants in the presence of the specific NO-scavenger cPTIO, suggesting that NO is required for its maximal and sustained activity. The in-gel and the in vitro CDPK activity, as well as the NO- or IAA-induced AR formation, were inhibited by calmodulin antagonists. Furthermore, the induction of CDPK activity by NO and IAA was shown to be reliant on the activity of the enzyme guanylate cyclase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.