Abstract

We study the mechanisms of advective trapping in composite porous media that consist of circular inclusions of distributed hydraulic conductivity embedded in a high conductivity matrix. Advective trapping occurs when solute enters low velocity regions in the media. Transport is analyzed in terms of breakthrough curves measured at the outlet of the system. The curve’s peak behavior depends on the volume fraction occupied by the inclusions, while the tail behavior depends on the distribution of hydraulic conductivity values. In order to quantify the observed behaviors, we derive two equivalent upscaled transport models. First, we derive a Lagrangian trapping model using the continuous-time random walk framework that is parameterized in terms of volume fraction and the distribution of conductivities in the inclusions. Second, we establish a non-local partial differential equation for the mobile solute concentration by volume averaging of the microscale transport equation. We show the equivalence between the two models as well as (first-order) multirate mass transfer models. The upscaled approach parameterized by medium and flow properties captures all features of the observed solute breakthrough curves and sheds new light on the modeling of advective trapping in heterogeneous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.