Abstract
The Bay of Bengal (BoB) has maintained its salinity distribution over the years despite a continuous flow of fresh water entering it through rivers on the northern coast, which is capable of diluting the salinity. This can be attributed to the cyclic flow of high salinity water (≥35 psu), coming from Arabian sea and entering BoB from the south, which moves northward and mixes with this fresh water. The movement of this high salinity water has been studied and analyzed in previous work (Singh et al., 2022). This paper extends the computational methods and analysis of salinity movement. Specifically, we introduce an advection based feature definition that represents the movement of high salinity water, and describe algorithms to track their evolution over time. This method allows us to trace the movement of high salinity water caused due to ocean currents. The method is validated via comparison with established observations on the flow of high salinity water in the BoB, including its entry from the Arabian Sea and its movement near Sri Lanka. Further, the visual analysis and tracking framework enables us to compare it with previous work and analyze the contribution of advection to salinity transport.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have