Abstract
Conventional P-P seismic images of geothermal reservoirs are often of poor quality because P-P data tend to have a low signal-to-noise ratio across geothermal prospects. Fracture identification, fluid prediction, and imaging inside subsurface areas influenced by superheated fluids are some of the challenges facing the geothermal industry. We showed that multicomponent seismic technology is effective for addressing all of these challenges across geothermal reservoirs, even when P-P data are of low quality. Although multicomponent seismic technology has advantages in geothermal exploration, there are not many published examples of multicomponent seismic data being used to characterize geothermal reservoirs. We evaluated data examples that illustrate advantages of multicomponent seismic technology for imaging within and below zones having superheated fluids, estimating fracture attributes, analyzing reservoir trapping structures, differentiating lithologies, and predicting spatial distributions of pore fluids. All examples we tested are from the Wister geothermal field in Southern California.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.