Abstract

Multicomponent seismic technology has been implemented across Wister geothermal field in southern California to evaluate the potential for further development of geothermal resources. The seismic survey was positioned atop the San Andreas fault system that extends southward from the Salton Sea. An interpretation of Wister Field geology was made using both P-P and P-SV seismic data. Two formation horizons, Canebrake/Olla/Diablo and Deguynos, were interpreted. Seismic time-structure maps were generated for each horizon. The objective of the study was to determine whether productive geothermal resources could be detected and mapped more reliably with multicomponent seismic data than with single-component P-P data. Complex faults associated with the regional San Andreas Fault system were interpreted across the [Formula: see text] 3D image space. The structural maps created are thought to be some of the most accurate depictions of subsurface structure publicly available in this area of the Imperial Valley. Particular attention was given to documenting faults that cut across deep strata. Both P-P and P-SV seismic showed evidence of such deep faults. Rock properties were analyzed from well logs. Log data showed that clastic rocks at this site exhibited measurable differences in [Formula: see text] velocity ratios for different rock types. Specifically, sand-prone intervals were associated with relatively low [Formula: see text] velocity ratios, and shale-dominated intervals had higher [Formula: see text] ratios. Using this rock physics behavior, [Formula: see text] values derived from seismic traveltime thicknesses were useful for recognizing lithological distributions and identifying favorable reservoir facies. Seismic data across Wister Field, like seismic data across many geothermal fields, have a low signal-to-noise character. We demonstrate that a unified and integrated interpretation of P and S data, even when seismic data quality is not as good as interpreters wish, can still yield valuable information for resource exploitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.