Abstract

Rapid, reliable, and cost-effective pathogen detection sensors are reshaping modern biomedical devices to a competent form for health care applications. Current approaches rely on microscopy, spectroscopy, polymerase chain reaction (PCR), and electrochemistry. The latter is an intriguing way of using electricity to drive a (bio)chemical reaction, the electronic read-out of which informs on the state of infection. Specifically, a recent electrochemical platform for pathogenic detection utilizes imprinted electrodes to detect species with high specificity based on their spatial 3-D "fingerprint." In this mini-review, we describe different compositions and techniques for fabricating imprinted electrodes that target various species of bacteria and viruses. We elaborate on the possible electrochemical pathogen detection methods, compare their performance with non-electrochemical methods, and emphasize the benefit of coupling electrochemistry with other established techniques. As a showcase, we contrast the ability of electrochemical DNA biosensors and imprinted electrodes to detect Zika and SARS-CoV-2 virus. • We discuss the advantages and disadvantages of polymer imprinted matrixes' composition and preparation methods for bacterial and viral targeting. • We describe various non-electrochemical complementary methods for characterization of the bare imprinting polymers surfaces and validation of the analyte capture. • We contrast the performances of two electrochemical-based methods: electrochemical Aptamers biosensors and polymers imprinting to detect the ZIKA and SARS-CoV-2 virus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call