Abstract
Graphene field effect transistors (GFETs) with top-gate and back-gate structures have been extensively used without much consideration for compatibility with graphene. A comparative study of the electrical characteristics of buried-gate GFETs and top-gate GFETs revealed that the performance of buried-gate GFETs is drastically enhanced by having a better gate controllability, achieving three times higher field effect mobility (∼3000 cm2 V−1 s−1) than top-gate GFETs with on/off ratio ∼10. Carrier scattering was also substantially improved by minimizing the fringing field effect, which is found to be the origin of high series resistance in top-gate GFETs. Moreover, we showed by electromagnetic (EM) simulation that the electric field distribution inside the transistors is more uniform at the buried-gate GFETs than the top-gate GFETs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.