Abstract

PurposeThe pediatric posterior fossa (PF) brain tumors with higher frequencies are embryonal tumors (ET), ependymal tumors (EPN) and pilocytic astrocytomas (PA), however, it is often difficult to make a differential diagnosis among them with conventional MRI. The ADC calculated from DWI could be beneficial for diagnostic work up. MethodWe acquired DWI at b = 1000 and 4000(s/mm2). The relationship between ADC and the three types of brain tumors was evaluated with Mann-Whitney U test. We also performed simple linear regression analysis to evaluate the relationship between ADC and cellularity, and implemented receiver operating characteristic curve (ROC curve) to test the diagnostic performance among tumors. ResultsThe highest ADC (b1000/b4000 × 10−3 mm2/s) was observed in PA (1.02−1.91/0.73−1.28), followed by PF-EPN (0.83−1.28/0.60−0.79) and the lowest was ET (0.41−0.75/0.29−0.47). There was significant difference among the groups in both ADC value (b-1000/b-4000: ET vs. PF-EPN p < 0.0001/0.0001, ET vs. PA p < 0.0001/0.0001, PF-EPN vs. PA p < 0.0001/0.0001). ROC analysis revealed that ADC in both b-values showed complete separation between ET and PF-EPN. And it also revealed that ADC at b-4000 could differentiate PF-EPN and PA (96.0%) better than ADC at b-1000 (90.1%). The stronger negative correlation was observed between the ADC and cellularity at b-4000 than at b-1000 (R2 = 0.7415 vs.0.7070) ConclusionsADC of ET was significantly lower than the other two groups, and ADC of PA was significantly higher than the other two groups in both b-1000 and b-4000. Our results showed that ADC at b-4000 was more useful than ADC at b-1000 especially for differentiation between PF-EPN and PA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call