Abstract

The current understanding of critical health infrastructure resilience is still dominated by a technical perspective. Reality however is different, as past events including the COVID-19 pandemic have revealed: emergency situations are only rarely exclusively technical in nature. Instead they are a product of prior circumstances, often linked to natural hazards, technical mishaps, and insufficient social and organizational preparedness structures. However, experiences and lessons learned from past events are still largely overlooked and have not sufficiently found their way into conceptual understandings of critical health infrastructure resilience. This paper addresses this gap by challenging the one-sided and technically oriented understanding of resilience in the context of critical health infrastructure. Based on a systematic literature review, it assesses real-world cases of water supply failures in healthcare facilities, a serious threat largely overlooked in research and policy. The results underscore the need for targeted organizational strategies to deal with cascading impacts. The overall findings show that addressing technical aspects alone is not sufficient to increase the overall resilience of healthcare facilities. Broadening the dominant resilience understanding is hence an important foundation for healthcare infrastructures to improve risk management and emergency preparedness strategies to increase their resilience towards future disruptions.

Highlights

  • With the exception of Dippenaar & Bezuidenhout [30] and McDaniels et al [32], resilience has rarely been considered from a social science perspective and irregularly integrates social components into the understanding of resilience, suggesting that the functionality of health systems is dependent on their technical components alone

  • Outside of the resilience discourse, our findings show that the majority of the papers mainly or even exclusively analyzed technical components of critical health infrastructures

  • This study demonstrated the importance of evaluating health infrastructure resilience for identifying and addressing gaps

Read more

Summary

Introduction

The definition shows typical technical resilience characteristics, such as the ability of system components to withstand and recover effectively from shocks, measured and quantified by return time and efficiency [23,24]. This example of a resilience definition used in an established and internationally recognized document, such as the Sendai Framework, illustrates that in today’s international arena the technical resilience understanding remains dominant, including in the field of critical infrastructures, despite emerging efforts to broaden it, e.g., in the context of drinking water systems [7] or minimum supply to govern infrastructure failures [25]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call