Abstract

Human reflexes are simple motor responses that are automatically elicited by various sensory inputs. These reflexes can provide valuable insights into the functioning of the nervous system, particularly the brainstem and spinal cord. Reflexes involving the brainstem, such as the blink reflex, laryngeal adductor reflex, trigeminal hypoglossal reflex, and masseter H reflex, offer immediate information about the cranial-nerve functionality and the overall state of the brainstem. Similarly, spinal reflexes such as the H reflex of the soleus muscle, posterior root muscle reflexes, and sacral reflexes provide crucial information about the functionality of the spinal cord and peripheral nerves. One of the critical benefits of reflex monitoring is that it can provide continuous feedback without disrupting the surgical process due to no movement being induced in the surgical field. These reflexes can be monitored in real time during surgical procedures to assess the integrity of the nervous system and detect potential neurological damage. It is particularly noteworthy that the reflexes provide motor and sensory information on the functional integrity of nerve fibers and nuclei. This article describes the current techniques used for monitoring various human reflexes and their clinical significance in surgery. We also address important methodological considerations and their impact on surgical safety and patient outcomes. Utilizing these methodologies has the potential to advance or even revolutionize the field of intraoperative continuous monitoring, ultimately leading to improved surgical outcomes and enhanced patient care.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call